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Deviations from uniform power law scaling in nonstationary time series
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A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit
long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy
physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations
in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as
on detrended fluctuation analysis, for quantifyogyiationsfrom uniform power-law scaling in nonstationary
time series. By analyzing extremely long data sets of uN+010° beats for 11 healthy subjects, we find that
the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By
contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow
erratically, indicating a loss of scaling stabilify61063-651X%97)05101-5

PACS numbds): 87.10+¢

[. INTRODUCTION point processwhile the other treats it as sequencef in-
terbeat interval§5,13]. Our intention is not to compare these

A major challenge in biological physics is the analysis oftwo approaches, but rather to test, by using two independent
time series that are typically highly nonstationdfy (Fig. = methods based on different descriptions of the data, the hy-
1). Such nonstationarities may be due to stable physiologipothesis that there may be a loss of scaling stability under
scaling associated with “fractal” properties or to instabilities pathological conditions.
related to internal or external perturbations. This highly ir-
regular behavior has recently motivated investigaf@rs7]
to apply time-series analyses that derive from statistical A. Fano factor and Allan factor methods

physics, especially methods for the study of critical phenom- e first develop techniques to quantify scaling stability
ena where fluctuations at all lengtitime) scales occur. pased on the Fano factdf0] and Allan factor functions
These studies show that under healthy conditions, many11]. We choose these methods because they are well suited
physiological time series exhibit long-range power-law cor-to the study of point processés]. A heartbeat time record
relations reminiscent of physical systems near a critical poingan be treated as a point process, i.e., as a sequence of events
[8]. However, the hypothesi®)] that normal physiological (beats distributed on the time ax{g4]. We divide the entire
systems behave consistently over a wider range of tim@me axis into nonoverlapping “boxes” or windows of size
scales than diseased systems matsbeen thoroughly tested, t seconds and count how many beats are in each box. We
and there has been no studydglviationsfrom stable power-  compute these counts separately for each box and then we
law scaling in nonstationary time series. Here we put thisompute the Fano factd(t), defined as thearianceof the

idea to an experimental test by studying the scaling stability.ounts divided by theimean In general, for a fractal point
of human heartbeat fluctuations.

The healthy heartbeat is traditionally thought to be regu-
lated according to the classical principle of homeostasis
whereby physiologic systems operate to reduce variability
and achieve an equilibriumlike stat&]. However, more re-

healthy

cent studieg2,7] reveal that under normal conditions, beat- =
to-beat fluctuations in the human heart rate display the kind £

of long-range correlations typically exhibited by dynamical £
systems far from equilibrium. In contrast, heart rate time 3§
series from patients with severe heart disease may show a§ 12
breakdown of this long-range correlation behavi@4]. E 10
Here we develop techniques based on Fa@o factor[10] 08 !
andAllan factor[11] functions, as well adetrended fluctua- 0.6
tion analysis(DFA) [12], to quantify scaling stability in hu- 0.4
man heart rate fluctuations for lengthy data getsnprising 0.2
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Il. METHODS . . .
FIG. 1. Interbeat interval time series for a healthy subjéeap

We analyze the heartbeat data sets using two independetiirve) and a subject with congestive heart failutettom curve.
and complementary approaches. One treats the heartbeat aSwh data are typically highly nonstationary.

1063-651X/97/561)/8455)/$10.00 55 845 © 1997 The American Physical Society



846 VISWANATHAN, PENG, STANLEY, AND GOLDBERGER 55

1.0 : : ‘ — 1.0 : —
(a) &—=o healthy
5---0 shuffled
0.0 t—o—q 1 0.0
= \ =
= B =
2 5 e
8 \\1:1\ 8
-1.0 N -1.0 |
o Ty ee - o &— healthy
=l 2---C heart disecase
Scaling Region of Interest e
2.0 : : : : 2.0 : : : ‘
-1.0 0.0 1.0 2.0 3.0 4.0 1.0 1.5 2.0 25 3.0 3.5
log,, t log,, t
4.0
=20 (© .
~ 3 q
= g =T 3 E T & ¢ E
2 0.0F
2 0.
> healthy
820 :
ks
ks)
n 4.0 T . r ;
w
H 20t 1
E % TITE gl
S 00—+ E j ]
T heart disease
2.0 L L L n
1.0 1.5 2.0 25 3.0 3.5

log,, t

FIG. 2. (a) Double log plot of the Allan factor functiori;(t) for a representative healthy subject and the surrogate data obtained by
randomly shuffling the interbeat interval time series. Successive valuefofease by a factor of 1.8. The shuffled data have the same
mean, variance, and higher moments as the original data, but temporal correlations are lost. The region of intetest@ssfowhere the
original data and surrogate differ considerably. To obtain good statistics, we use a minimum of 300 nonoverlapping boxes. However, for
larget, we partially overlap the boxes to obtain 300 boxes. The scaling region is chosen so that there is no significant difference in the
scaling stability of the shuffled surrogate data obtained from normal and disease s(dgedtse text (b) Allan factor functionf(t) for a
representative healthy and a diseased subject, where the subscript indicates linear detseedihg text We find that the function
f1(t) scales more uniformly for the normal data than for data from subjects with heart disease. Spedifi@dllgas more curvature for
disease vs healtlic) Mean = 1 standard deviation of the local slopegt) for normal(top curve and disease dathottom curvé. We find
that there is greater variation iy (t) for disease data sets than for normal ones, especiallyf@00 s, suggesting a loss of scaling stability
with heart disease.

process with persistent correlatiorigt) will increase when successive differences of a linearly increasing quantity pro-
we increase the size of the boxWhen plotting the function duces a constant, stationary variaf2€)].
f(t) versust on a double log scale, good linear behavior In the asymptotic regioflarget valug, we can define the
indicates the existence of scaliiifyactal) properties in the scaling exponenty,(t) as y4(t)=dlogf,(t)/dlogt, i.e., y,(t)
time series. is the “local” derivative (slope of the log-log plot of
The box-counting method requires important modifica-f,(t) (Fig. 2). In actual calculation, we estimatg,(t) by
tions for studying nonstationary daftd,15—17. If there are  taking the slopeAlogf;(t)/Alogt=Alogf(t)/logl.8, where
trends in the datde.g., if the average heart rate steadily 1.8 is the ratio of successive values tothat we used. If
increases or decreases over a given time pegritiebn the  y,(t) is constant for different then the scaling is consistent
above method gives spurious results. To correct for trendand stable. Substantial variationjn(t) with t indicates that
and patchiness in the data, we use a modification of the Fartbe scaling properties of the system are not consistent, and
factor known as the Allan factor, originally developed to are unstable even when linear trends in the data are removed.
study the stability of atomic-based clock$l] (see also We next describe how we select the scaling region for our
[18,19). The Allan factorf(t) is defined as the variance of analysis. It is known that the scaling behavior of the Allan
the differencebetween the number of beats in two successivdactor appears only at relatively large time scdbsymptotic
boxes divided by twice the mean box count. This modifica-region). However, for biological data, it is impractical to
tion eliminates alllinear trends in the data because taking study the properties of any function in this region. Therefore,



55 DEVIATIONS FROM UNIFORM POWER LAW SCALING . .. 847

1.0 ‘ - ———— : - 1.0
@ ] (b) o
o ’ 05 /, ’
//Z s o ,/’B
0.0 . /Q/Q =l D/L
@%; oo? i
= o gio = 0.0 ¢ e/@/g o
b 0gh¥ N s &7
2 - BE? 7 ° ,Q/Q B/D

2 e Ee o 8 057 o -

40t =97 o2 1 e

- ¥l
g
g &——=9 healthy 10t g G———>0 healthy
2 . o
/ = - -- 0 shuffled U/E" =---0 heart disease
‘L”,/‘r
2.0 " — - : : 1.5 —— : : :
0.5 1.0 1.5 2.0 2.5 3.0 15 2.0 25 3.0
log,, n log,, n
15

(c)
§E§§§g§§§§§§§§§§§§§§,

healthy

T ape b

heart disease

1.5 2.0 2.5 3.0
log,, n

-
o

o
&)

—_
(4]

Mean + 1 SD of local slopes o(n)
5

0.5

FIG. 3. (a) Double log plot of the DFA functiorFp(n) for a representative subject and surrogate data obtained by randomly shuffling
the same interbeat interval time series. The DFA function does not have the “dip” observed in the Allan factor. Wevebi#nfor the
shuffled data because of the absence of temporal correlations. The scaling region shown is approximately equal to the scaling region of
interest used for the Allan factdsee the te3t Successive values of differ by a factor of 2. (b) DFA function Fp(n) for the same
representative healthy and diseased subjects as in Fig. 2. We note the consistently higher valirediséase, consistent with previous
studies of heartbeat dynamif8]. Moreover, the scaling instability indices are able to detect subtle deviations from uniform power-law
behavior that are otherwise difficult to see directly by visual inspectiriviean + 1 standard deviation of the DFA scaling exponeiusal
slopes a(n) computed for the normdtop curve and disease¢bottom curve groups of subjects. We find greater variability @fn) for
the diseased subjects than for the healthy ones, confirming the loss of scaling stability with disease.

we need to carefully select a region that exhibits the scalingnot due to differences in the probability distributions of the
behavior of interest. To this end, we use shuffled time seriemterbeat intervals, but rather arises from intrinsic differences
as controls. in the scaling behavior of long-range temporal correlations.
When we shuffle the interbeat intervals for each time sewe find this region of interest to be &0ogt<3.5.
ries, we find that the Allan factor functiofy(t) steadily
decreases and then flattens for10 s for both healthy and
disease data se{$ig. 1), indicating a loss of long-range
correlations [5]. For small time scales[see region The above treatment of the heartbeat time series as a point
log;ot=10 in Fig. 2a)], the Allan factor function is different Process has possible limitations that arise from parametrizing
for these shuffled data sets due to the strong influence of tHée time series in terms of real tinte The Allan factor
probability distributions of the interbeat intervalsot their ~ f1(t) has a “dip” neart=10 s due to the anticlusterirge.,
dynamical properties regularity of the heartbeat on these scalé$ This effect is
In contrast, for very large time scales, the scaling behavpartially caused by the “dead time” following each heart-

ior is the same for the shuffled data from different subjectspeat during which the heart is refractory to stimulat[&i

i.e., f1(t) is constant and the scaling exponent is zero. Thughe dip causes the Allan factor to have curvature even up to
we can define a scaling region of interest where there are nig=100 s. For these reasons, the Allan factor may not always
significant differences in scaling stability between thereliably separate effects due to the shape of the interbeat
healthy and disease data sets after shuffling. This requirgénterval distribution from those arising from long-range cor-
ment makes it more likely that any observed difference inrelations. DFA[12,4], which treats the heartbeat as a time
scaling between the original normal and disease data sets $eries parametrized by beat numpeather than by time, is

B. Detrended fluctuation analysis(DFA) method
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factor. However, the two scaling regions cannot be matched

- 25 O exactly since the Allan factdr,(t) is of necessity referenced

= to real time, while the DFA functiofrp(n) is referenced to

> 20 beat number.

[0}

©

£ 45 O ll. ANALYSIS

FA

2 : 8 Our analysis is based on the digitized electrocardiograms

% 1.0 é of beat-to-beat heart rate fluctuations over very long time

£ scales(up to 24 h~10° beat$ recorded with an ambulatory

2 05 m o e | monitor. We truncate each time series to 69 000 beats to

R % eliminate spurious effects due to variations in data set

@ lengths and we remove data points due to nonsinus beats
0.0

associated with interbeat intervals greater than 1M 1).
healthy heart disease These deleted beats comprise a very small fraction of our
o o ) records(less than 0.1%
FIG. 4. Scaling instability indexT y,(t)] for each subject. We We study data from a group of 11 healthy subjéatean
find thataf y,(t)] is considerably greater for diseased subjects thanage, 32: range, 20~4%Fig. 2. We find that the Allan factor
for healthy subjects. Furthermore, there is more intragroup variabiI-SCaling exponenty;(t) is approximately constant for the
ity in the subjects with heart disease, consistent with a wide rangﬁealthy data for different values ofas well as for different

in the degree of pathologic disturbances. The values of the scaling ~, . . . -
instability index for the healthy and disease data sets are signifigUbJeCtS' Typically, we find for healthy subjects thal(t)

cantly different £<0.0002, Wilcoxon rank sum testHowever, if ies in the range & 7_’1(t)_<2 in the r_eglon of |nterest. .
each time series is randomly shuffled, then the resulting values of W& perform the identical analysis on 14 subjects with a
the scaling instability index are no longer different. This finding life-threatening form of heart disease known @mgestive
indicates that there is a significant loss of scaling stability with heari€art failure (mean age, 56; range, 22-7We find wide
disease. Furthermore, this loss of scaling stability cannot be de/ariations iny,(t), indicating that fluctuations grow errati-
tected by measuring only the mean and variance of the interbe&ally and nonuniformly with time scalg, consistent with
interval time series, i.e., the physiologically important scaling sta-scaling instabilities in the dynamics of the system.
bility information is contained in the temporal ordering of the in-  We verify these findings using DFA. Figure 3 compares
terbeat intervals rather than in their probability distribution. the DFA scaling exponent(n) for the normal and diseased
subjects. We find that there is greater variatiorim) for
not susceptible to these limitations and can be used tdiseased subjects than for healthy subjects.
complement our Allan factor analydi&1]. We next define twescaling instability indicedor quanti-
The DFA method 12] has been systematically compared fying departures from stable power-law scaling:y,(t)]
with other algorithms for measuring fractal correlations byand p[ y,(t)] are the standard deviation and ran@e.,
Taqquet al. [22] and was found to be the best of the com- maximum minimun), respectively, of the scaling exponents
putationally efficient methods. It is summarized as follows.y;(t) in the region of interest 1:8logt<3.5. Small values
First, the interbeat interval time serie$j) (wherej is the  of the scaling instability indices indicate uniform, stable scal-
beat number is integrated to give a function ing, while large values indicate deviations from stable scal-
y(j)==1_ou(i), which can be thought of graphically as a ing (Fig. 4. We further defines{ a(n)] andp[a(n)] to be
one-dimensional random walk. The sequen¢g) is then  the standard deviation and range, respectively, of the DFA
divided into a number of sub sequences of lengtiFor each ~ exponentx(n) in the scaling region 15logn<3.0. We find
subsequence, linear regression is used to calculate an intétatistically significant differences between healthy and dis-
polated “detrended” walky’(j)=a+b(j—jo). We define eased group24]. Specifically, as indicated in Figs(@ and
the “DFA fluctuation” by Fp(n)={(dy)?), where 3(0),_ the_re is an underlying Ioss. of uniform power-law scal—_
sy=y(j)—Yy'(j) and the angular brackets denote averagingnd in disease. The observed differences between heart fail-
over all pointsy(j). We use a moving window to obtain Ure and healthy control groups was not related to age effects.

better statistic$§23]. The DFA exponent(n) is defined by
IV. DISCUSSION

_ dlogFp(n)

= - - Our results suggest that the scaling properties of the dy-
dlog(n+3)’ (1) ag g prop y

namics for a group of healthy subjects are more uniform than
those from subjects with congestive heart fail(Fég. 4).
where the+3 term is a correction important for small[23].  The greater scaling consistency found for healthy subjects
We estimatea(n) by taking the slopeAlogFp(n)/Alogn,  suggests that the fluctuations in heart rate scale in a more
whereAlogn=2"* and 2/* is the ratio of successive values stable fashion than in disease. The hypothesis that scaling
of n. Uncorrelated data give rise ta=1/2, as expected instabilitiesmay be indicative of perturbed behavior is plau-
from the central limit theorem, while correlated data givesible for several reasons.

a(n

rise to a#1/2. A constant value of(n) indicates stable (i) Many systems, such as those regulating the heartbeat,
scaling, while departures indicate loss of scaling stability. are under neurophysiological control.
We choose the scaling region of interest<16gn<3.0 (i) Healthy neurophysiological control mechanisms regu-

corresponding approximately to the one used for the Allarlate their activity over a wide range of effective time scales.
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Fluctuations on such widely different time scales are remarktime series and applied these techniques to complex cardiac

ably similar to each other, leading to stable power-law scalinterbeat interval time series obtained under healthy and

ing spanning several decades in healthy cases. pathologic conditions. These techniques may generalize to
(iii) The inability of a pathologic or agin§25] neuro- the analysis of a wide variety of nonstationary time series.

physiological system to regulate itself over particular time

scales may lead to a breakdown or instability of scaling on ACKNOWLEDGMENTS
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V. CONCLUSION
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